Tensors, ranks, and varieties.

Enrico Carlini

Department of Mathematical Sciences
Politecnico di Torino, Italy
Kick-off meeting, 21 March 2018

Tensor rank

Let V_{1}, \ldots, V_{m} be \mathbb{C}-vector spaces of dimension $\operatorname{dim} V_{i}=n_{i}+1$.
A tensor $T \in V=V_{1} \otimes \ldots \otimes V_{m}$ is

$$
T=\sum \alpha_{i_{1}, \ldots, i_{m}} v_{i_{1}} \otimes \ldots \otimes v_{i_{m}}
$$

where the coefficients $\alpha_{i_{1}, \ldots, i_{m}} \in \mathbb{C}$ and the vectors $v_{i_{j}} \in V_{j}$.

Tensor rank

Let V_{1}, \ldots, V_{m} be \mathbb{C}-vector spaces of dimension $\operatorname{dim} V_{i}=n_{i}+1$.
A tensor $T \in V=V_{1} \otimes \ldots \otimes V_{m}$ is

$$
T=\sum \alpha_{i_{1}, \ldots, i_{m}} v_{i_{1}} \otimes \ldots \otimes v_{i_{m}}
$$

where the coefficients $\alpha_{i_{1}, \ldots, i_{m}} \in \mathbb{C}$ and the vectors $v_{i_{j}} \in V_{j}$.

Tensor rank

Let V_{1}, \ldots, V_{m} be \mathbb{C}-vector spaces of dimension $\operatorname{dim} V_{i}=n_{i}+1$.
A tensor $T \in V=V_{1} \otimes \ldots \otimes V_{m}$ is

$$
T=\sum \alpha_{i_{1}, \ldots, i_{m}} v_{i_{1}} \otimes \ldots \otimes v_{i_{m}}
$$

where the coefficients $\alpha_{i_{1}, \ldots, i_{m}} \in \mathbb{C}$ and the vectors $v_{i_{j}} \in V_{j}$.
There are some distinguished elements in V that we commonly use to represent all the other elements

Elementary tensors

A tensor

$$
v_{1} \otimes \ldots \otimes v_{m} \in V
$$

with $v_{i} \in V_{i}$ is called elementary tensor.

Tensor rank

Note that using elementary tensors we can construct a basis for V and thus for any $T \in V$ we can write

$$
T=\sum_{i=1}^{r} E_{i}
$$

where the E_{i} are elementary tensors.
We give the following definition

Tensor rank

Note that using elementary tensors we can construct a basis for V and thus for any $T \in V$ we can write

$$
T=\sum_{i=1}^{r} E_{i}
$$

where the E_{i} are elementary tensors.
We give the following definition

Tensor rank

The tensor rank of T is

$$
\operatorname{rk}(T)=\min \left\{r: T=\sum_{i=1}^{r} E_{i}, E_{i} \text { elementary }\right\}
$$

Tensor rank

Example $V=V_{1} \otimes V_{2}$

In this case $T \in V$ can be written as

$$
T=\sum_{i, j} \alpha_{i j} v_{i} \otimes v_{j}
$$

Fixing bases in V_{1} and V_{2}, T corresponds to the $\operatorname{dim} V_{1} \times \operatorname{dim} V_{2}$ matrix

$$
\boldsymbol{A}_{\boldsymbol{T}}=\left(\alpha_{i j}\right)
$$

Elementary tensors correspond to matrices of rank one, thus

$$
\operatorname{rk}(T)=\operatorname{rk}\left(A_{T}\right)
$$

Tensor rank

By basic properties of the tensor product we know that multilinear operators are tensors.

Tensor rank

By basic properties of the tensor product we know that multilinear operators are tensors. For example, the multiplication of two matrices

$$
A \in \mathbb{C}^{n, m}, B \in \mathbb{C}^{m, p}
$$

corresponds to a tensor

Tensor rank

By basic properties of the tensor product we know that multilinear operators are tensors. For example, the multiplication of two matrices

$$
A \in \mathbb{C}^{n, m}, B \in \mathbb{C}^{m, p}
$$

corresponds to a tensor

$M_{\text {(n,m,p〉 }}$

$$
\mathbf{M}_{\langle\mathbf{n}, \mathbf{m}, \mathbf{p}\rangle} \in \mathbb{C}^{n, m^{*}} \otimes \in \mathbb{C}^{m, p^{*}} \otimes \mathbb{C}^{n, p}
$$

is the matrix multiplication tensor. If $n=m=p$, that is for square matrices, we just write $\mathbf{M}_{\langle\mathbf{n}\rangle}$.

Knowing $\operatorname{rk}\left(\mathbf{M}_{\langle\mathbf{n}, \mathbf{m}, \mathbf{p}\rangle}\right)$ relates to the computational complexity of matrix multiplication.

Tensor rank

It is not difficult to find an upper bound for $\operatorname{rk}\left(\mathbf{M}_{\langle\mathbf{n}, \mathbf{m}, \mathbf{p}\rangle}\right)$.
$\operatorname{rk}\left(\mathbf{M}_{\langle\mathbf{n}, \mathbf{m}, \mathbf{p}\rangle}\right) \leq n m p$

Tensor rank

It is not difficult to find an upper bound for $\operatorname{rk}\left(\mathbf{M}_{\langle\mathbf{n}, \mathbf{m}, \mathbf{p}\rangle}\right)$.
$\operatorname{rk}\left(\mathbf{M}_{\langle\mathbf{n}, \mathbf{m}, \mathbf{p}\rangle}\right) \leq n m p$

Tensor rank

It is not difficult to find an upper bound for $\operatorname{rk}\left(\mathbf{M}_{\langle\mathbf{n}, \mathbf{m}, \mathbf{p}\rangle}\right)$.

$\operatorname{rk}\left(\mathbf{M}_{\langle\mathrm{n}, \mathrm{m}, \mathrm{p}\rangle}\right) \leq n m p$

Given matrices

$$
A=\left(a_{i j}\right) \in \mathbb{C}^{n, m}, B=\left(b_{j l}\right) \in \mathbb{C}^{m, p}, C=\left(c_{i l}\right) \in \mathbb{C}^{n, p}
$$

and choosing dual bases $\left\{\alpha_{i j}\right\}$ and $\left\{\beta_{j l}\right\}$ we get that

$$
\mathbf{M}_{\langle\mathbf{n}, \mathbf{m}, \mathbf{p}\rangle}=\sum_{i j l} \alpha_{i j} \otimes \beta_{j l} \otimes c_{i l}
$$

and thus the conclusion follows.
For example $\operatorname{rk}\left(\mathbf{M}_{\langle\mathbf{n}\rangle}\right) \leq n^{3}$.

Tensor rank

Strassen's result and $\mathbf{M}_{\langle\mathbf{2}\rangle}$

The usual matrix multiplication in the case 2×2 is

$$
\mathbf{M}_{\langle\mathbf{2}\rangle} \in \mathbb{C}^{2,2} \otimes \in \mathbb{C}^{2,2} \otimes \mathbb{C}^{2,2}
$$

where

$$
\mathbf{M}_{\langle\mathbf{2}\rangle}=\sum_{i=1}^{8} E_{i}
$$

for eight elementary tensors and thus

$$
\operatorname{rk}\left(\mathbf{M}_{\langle\mathbf{2}\rangle}\right) \leq 8
$$

But in the '60s Strassen wanted to prove that equality holds and...

Tensor rank

Strassen's result and $\mathbf{M}_{\langle\mathbf{2}\rangle}$

Strassen showed that

$$
\operatorname{rk}\left(\mathbf{M}_{\langle\mathbf{2}\rangle}\right) \leq 7,
$$

and we now know that equality holds. That is

$$
\mathbf{M}_{\langle\mathbf{2}\rangle}=\sum_{i=1}^{7} F_{i}
$$

for seven, and no fewer, elementary tensors F_{i}. Thus one can multiply $n \times n$ matrix with complexity

$$
O\left(n^{\log _{2} 7}\right)
$$

Tensor rank

$M_{\langle 3\rangle}$

Clearly

$$
\operatorname{rk}\left(\mathbf{M}_{\langle\mathbf{3}\rangle}\right) \leq 27,
$$

and we know that

$$
19 \leq \operatorname{rk}\left(\mathbf{M}_{(3\rangle}\right) \leq 23,
$$

but we do not know the actual value yet!

X-rank

We want to find a uniform setting to deal with different notions of ranks (e.g. tensor rank, symmetric rank).

X-rank

We want to find a uniform setting to deal with different notions of ranks (e.g. tensor rank, symmetric rank). First we note that our rank definition are invariant up to scalar multiplication, thus it is natural to work over the projective space.

Projective space

Given a $N+1$ dimensional vector space V, we define

$$
\mathbb{P}(V)=\mathbb{P}^{N} \backslash 0=V / \mathbb{C}^{*}
$$

and $[v] \in \mathbb{P}(V)$ is the equivalence class $\{\lambda v: \lambda \in \mathbb{C} \backslash\{0\}\}$.

X-rank

We want to work with special subset of the projective space, namely algebraic varieties.

X-rank

We want to work with special subset of the projective space, namely algebraic varieties.

V(I)
Given a homogeneous ideal $I \subseteq \mathbb{C}\left[x_{0}, \ldots, x_{N}\right]$ we define the algebraic variety

$$
V(I)=\left\{p \in \mathbb{P}^{n}: F(p)=0 \text { for each } F \in I\right\}
$$

Note that to each algebraic variety $X \subseteq \mathbb{P}^{N}$ corresponds a radical ideal

X-rank

We want to work with special subset of the projective space, namely algebraic varieties.

V(I)

Given a homogeneous ideal $I \subseteq \mathbb{C}\left[x_{0}, \ldots, x_{N}\right]$ we define the algebraic variety

$$
V(I)=\left\{p \in \mathbb{P}^{n}: F(p)=0 \text { for each } F \in I\right\}
$$

Note that to each algebraic variety $X \subseteq \mathbb{P}^{N}$ corresponds a radical ideal
I(X)

$$
I(X)=\{F \in S: F(p)=0 \text { for each } p \in X\}
$$

X-rank

Some features of algebraic varieties

- The algebraic variety X is completely determined by the ideal $I(X)$

X-rank

Some features of algebraic varieties

- The algebraic variety X is completely determined by the ideal $I(X)$

X-rank

Some features of algebraic varieties

- The algebraic variety X is completely determined by the ideal $I(X)$
- All ideal $I \subseteq S$ have a finite number of generators (Hilbert's basis theorem)

X-rank

Some features of algebraic varieties

- The algebraic variety X is completely determined by the ideal $I(X)$
- All ideal $I \subseteq S$ have a finite number of generators (Hilbert's basis theorem)
- For each ideal we can compute a numerical function $H F_{I(X)}(t)$ giving to us several information about X : emptyness, dimension, degree, etc (Hilbert function)

X-rank

Some features of algebraic varieties

- The algebraic variety X is completely determined by the ideal $I(X)$
- All ideal $I \subseteq S$ have a finite number of generators (Hilbert's basis theorem)
- For each ideal we can compute a numerical function $H F_{I(X)}(t)$ giving to us several information about X : emptyness, dimension, degree, etc (Hilbert function)
- Groebner bases of $I(X)$ are used to study X, for example its projections (Elimination theory)

X-rank

Some features of algebraic varieties

- The algebraic variety X is completely determined by the ideal $I(X)$
- All ideal $I \subseteq S$ have a finite number of generators (Hilbert's basis theorem)
- For each ideal we can compute a numerical function $H F_{I(X)}(t)$ giving to us several information about X : emptyness, dimension, degree, etc (Hilbert function)
- Groebner bases of $I(X)$ are used to study X, for example its projections (Elimination theory)
- The image of an algebraic projective variety via a polynomial map is a projective variety

X-rank

Some features of algebraic varieties

- The algebraic variety X is completely determined by the ideal $I(X)$
- All ideal $I \subseteq S$ have a finite number of generators (Hilbert's basis theorem)
- For each ideal we can compute a numerical function $H F_{I(X)}(t)$ giving to us several information about X : emptyness, dimension, degree, etc (Hilbert function)
- Groebner bases of $I(X)$ are used to study X, for example its projections (Elimination theory)
- The image of an algebraic projective variety via a polynomial map is a projective variety
- Algebraic varieties are the closed subset of the Zariski topology

X-rank

Given an algebraic variety $X \subset \mathbb{P}^{N}$ and a point $p \in \mathbb{P}^{N}$, we define

X-rank

The X-rank of p with respect to X is

$$
X-\mathrm{rk}(p)=\min \left\{r: p \in\left\langle p_{1}, \ldots, p_{r}\right\rangle, p_{i} \in X\right\}
$$

where

$$
\left\langle p_{1}, \ldots, p_{r}\right\rangle=\mathbb{P}\left(\left\{\lambda_{1} v_{1}+\ldots+\lambda_{r} v_{r}: \lambda_{i} \in \mathbb{C}\right\}\right)
$$

is the linear span of the points $p_{i}=\left[v_{i}\right]$'s.
Clearly, $X-\mathrm{rk}(p)=1$ if and only if $p \in X$.

X-rank

Segre varieties

Given vector spaces V_{1}, \ldots, V_{t}, we consider the map

$$
\begin{gathered}
s: \mathbb{P}\left(V_{1}\right) \times \ldots \times \mathbb{P}\left(V_{t}\right) \longrightarrow \mathbb{P}\left(V_{1} \otimes \ldots \otimes V_{t}\right) \\
{\left[v_{1}\right], \ldots,\left[v_{t}\right] \mapsto\left[v_{1} \otimes \ldots \otimes v_{t}\right]}
\end{gathered}
$$

this is called the Segre map and its image X is called the Segre product of the varieties $\mathbb{P}\left(V_{i}\right)$.

X-rank

Segre varieties

Since the Segre variety $X=s\left(\mathbb{P}\left(V_{1}\right) \times \ldots \times \mathbb{P}\left(V_{t}\right)\right)$ parameterizes elementary tensors in $V_{1} \otimes \ldots \otimes V_{t}$, it is clear that

$$
X-\operatorname{rk}([T])=\min \left\{r:[T] \in\left\langle\left[E_{1}\right], \ldots,\left[E_{r}\right]\right\rangle\right\}
$$

and thus the X-rank with respect to the Segre variety is just the (tensor) rank.

